Electrical stimulation induces fiber type-specific translocation of GLUT-4 to T tubules in skeletal muscle.
نویسندگان
چکیده
Insulin and contraction independently stimulate glucose transport in skeletal muscle. Whereas insulin activates glucose transport more in muscles composed of type I and IIa fibers, electrical stimulation increases glucose transport at least as much in type IIb fiber-enriched muscles despite the fact that the latter fiber type contains less GLUT-4 glucose transporters. The aim of the present study was to test the hypothesis that a greater GLUT-4 translocation to the cell surface may underlie the higher contraction-stimulated glucose transport in type IIb myofibers. Leg muscles from rats were stimulated in situ at 100 Hz (200 ms) each 2 s via the sciatic nerve over a period of 20 min while the contralateral leg was kept at rest. Muscle 2-[3H]deoxy-d-glucose uptake (2-DG) was measured in separated red gastrocnemius (RG, type I and IIa fibers) and white gastrocnemius (WG, type IIb fibers) muscles. Resting 2-DG uptake was greater in RG than WG. Electrical stimulation increased 2-DG uptake over resting values similarly in WG and RG. Fractions enriched with either plasma membranes, transverse (T) tubules, triads, or GLUT-4-enriched intracellular membranes were isolated from RG and WG using a recently developed subcellular fractionation procedure. Electrical stimulation similarly increased GLUT-4 protein content in plasma membranes of RG and WG, whereas it stimulated GLUT-4 translocation more (∼50%) in T tubules of WG than in RG. GLUT-4 content was not changed in triads of both muscle types. The increments in cell surface GLUT-4 protein levels were paralleled by significant reductions in the amount of the transporter in the intracellular membrane fractions of both muscle types (by 60% in RG and 56% in WG). It is concluded that electrically induced contraction stimulates GLUT-4 translocation more in T tubules of WG than RG. The physiological implications of this finding for glucose uptake by contracting RG and WG muscles is discussed.
منابع مشابه
Endurance training induces fiber type-specific revascularization in hindlimb skeletal muscles of rats with chronic heart failure
Objective(s): Previous studies showed that skeletal muscle microcirculation was reduced in chronic heart failure. The aim of this study was to investigate the effects of endurance training on capillary and arteriolar density of fast and slow twitch muscles in rats with chronic heart failure. Materials and Methods: Four weeks after surgeries (left anterior descending (LAD) artery occlusion), chr...
متن کاملDirect evidence of fiber type-dependent GLUT-4 expression in human skeletal muscle.
GLUT-4 expression in individual fibers of human skeletal muscles in younger and older adults was studied. Furthermore, the dependency of insulin-stimulated glucose uptake on fiber type distribution was investigated. Fiber type distribution was determined in cryosections of muscle biopsies from 8 younger (29 yr) and 8 older (64 yr) healthy subjects, and estimates of GLUT-4 expression in individu...
متن کاملAENDO May 41/5
Gaster, M., P. Poulsen, A. Handberg, H. D. Schrøder, and H. Beck-Nielsen. Direct evidence of fiber type-dependent GLUT-4 expression in human skeletal muscle. Am J Physiol Endocrinol Metab 278: E910–E916, 2000.—GLUT-4 expression in individual fibers of human skeletal muscles in younger and older adults was studied. Furthermore, the dependency of insulin-stimulated glucose uptake on fiber type di...
متن کاملGlucose uptake and GLUT-4 protein distribution in skeletal muscle of the obese Zucker rat.
The rates of muscle glucose uptake of lean and obese Zucker rats were assessed by hindlimb perfusion under basal conditions (no insulin), in the presence of a maximally stimulating concentration of insulin (10 mU/ml), and after muscle contraction elicited by electrical stimulation of the sciatic nerve. After perfusion, plasma and microsomal membranes were isolated from selected hindlimb muscles...
متن کاملActivity-dependent nuclear translocation and intranuclear distribution of NFATc in adult skeletal muscle fibers
TTranscription factor nuclear factor of activated T cells NFATc (NFATc1, NFAT2) may contribute to slow-twitch skeletal muscle fiber type-specific gene expression. Green fluorescence protein (GFP) or FLAG fusion proteins of either wild-type or constitutively active mutant NFATc [NFATc(S-->A)] were expressed in cultured adult mouse skeletal muscle fibers from flexor digitorum brevis (predominantl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American journal of physiology
دوره 273 4 Pt 1 شماره
صفحات -
تاریخ انتشار 1997